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ABSTRACT

This report contains the results of an analytic investigation of the

Transverse Doppler Pattern Measurement Technique for determining

the far field radiation characteristics of large antennas from near field

measurements. The technique is based on using Doppler signalprocess-

ing to obtain the information necessary for predicting the far field pat-

terns of large antennas in their site environments. Primary emphasis

has been placed on establishing a rigorous mathematical description of

the measurement process from which system parameters and perform-

ance may be determined.

Several mathematical models have been developed which differ

both in the analytical approach and in the physical make-up of the meas -

uring system. Mathematical approximations for the diffraction field of

the aperture have been expanded in several coordinate frames. The sig-

nal processing systems investigated include multichannel processing,

synthetic aperture processing, and directional and nondirectional sam-

pling antennas. Attention has been given to linear arrays, rectangular

arrays with separable and nonseparable distributions, circular apertures

with circularly symmetric distribution, and arbitrarily shaped radiating

apertures with large linear phase deviations. Two experimental proce-

dures have been outlined for the purpose of verifying the feasibility of

the analytical work.
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I. INTRODUCTION

The far field behavior of antennas is customarily measured at dis-

tances which exceed or are at least equal to 2D /X, where D is the

aperture diameter and X is the operating wavelength in free space. For

many large antennas, especially those used for radio astronomy, con-

ventional methods of pattern measurement at this distance are always

difficult and often impossible. For this reason, various other techniques

have been utilized in obtaining desired data on the far field performance

of these large antennas. These techniques include actual far field meas-

urements using aircraft, balloons, and radic stars to obtain the required

measurement distance as well as near field measurements such as prob-

ing the aperture field to obtain the aperture distribution and focusing the

antenna within the near field.1,2,3 Such techniques are, in general,

straightforward extensions of conventional pattern measurement proce-

dures and are more or less satisfactory depending on the particular

antenna being evaluated. They are usually involved and time consuming

and, in some cases, require modification of the antenna from its opera-

tional configuration with a resultant uncertainty in the measured data.

Described in this report is the analytic investigation of the appli-

cation of Doppler techniques to the large antenna pattern measurement

problem in an attempt to overcome the various difficulties associated

with more conventional methods of measurement. The aperture distri-

bution is obtained by processing the signal received by a probe antenna

which moves at high velocity across the radiating aperture at a distance

which is a small fraction of its far field distance. The far field radia-

tion pattern is then obtained directly from the measured aperture distri-

bution by performing the radiation integration. The analytic expressions

1



which form the basis of the Transverse Doppler Pattern Measurement

Technique are considered in detail and various methods of signal proc-

essing are examined. The technique is applied to various antenna con-

figurations and computations of the results are presented. Experiments

for determining the feasibility of the measurement technique are also

discussed.
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II- GENERAL Al-I•ALYSIS

Under the ass. umption that the antenna whose characteristics are

to be measured ma•x be represented by an aperture lying in the g, 71 plane

and that the apertur- e fie ld is uniformly polarized in the g-direction, the
4

diffraction field is .giverk by (using Silver's scalar field approximation ):

Up 4r F( r k + 1z r1 +J z"

for the geometry of- Figuire la. In the equation,

STI) = A( . ti) exp [j,1I(g,n)),the aperture distribution

is aL. unit vector in the direction from the aperture
poir-it , ' to the field point P

Sis as- unit vector along a ray through the aperture.

Equation (1) may be cornsiderably simplified under the following condi-

tions:

i k >>I- or kr >> I
r

Irl 1 R =cos 1-
z z1

z

The first condition requires that the measurement distance be large com-

pared with the oper-ating wavelength. The second requires that the

3
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A
measurement distance be large enough so that the unit vector A,

directed from an arbitrarily located current element on the aperture to

the field point P, is essentially parallel to the unit vector f 1 directed

from the center of the aperture to the field point, and that the antenna

main beam be at or near broadside. The third condition requires that

the phase distribution be essentially planar. These conditions are, in

general, adequately met for large antennas of the type being considered

here, and the scalar diffraction equation reduces to

jkexp (ja ot) AF(gr) exp (-jkr) dgd (

Now assume that the diffraction field is sampled with an omnidirectional

probe antenna which is moving across the aperture at a constant height

h with a constant velocity v. The probe path is described by the space

coordinates x = 0, y is variable, and z = h. The y-axis is coincident

with the n1 -axis, and the origin of the space coordinate system coincides

with that of the aperture coordinate system as indicated in Figure lb.

In rectangular coordinates, r may be expressed as

[•2 )2 21/2

r = +(n -y) +hZ] (3)

Thus, in terms of the parameters, h and y, the radiated field along

the probe path is



I

jk exp OJ(Aot 0 ?2 Sc201) 2

g (h,y) = 0 din dtF(l,,-)
y Sel(n)

exp -jk[h2 + 2 + (y T)/2

[hZ + 2 + (y- )2] /(4

For y a linear function of time (corresponding to a constant probe

velocity)

y = vt ; -00 < t < +00

and

jk exp (jwo t) 71z Cc2 (n)

g y(h, vt) = d il ?()

exp{)jk[(vt -n)2 +h 2 + tz]1/Z2

[(Vt - )Z + h2  + t 1/2 
(5,

Now let us consider the effect of passing this time dependent signal

through a bandpass filter as it is received at the probe antenna. The

spectral density of the signal after passage through the filter is found

using the Fourier transform pair:



g(t) = 1 G(w) exp (jut) dw

(6)

G(w) g(t) exp (-jwt) dt

For a filter with a characteristic function H(o) , the spectral density of

the output signal is

S (w) = H(w) G(w) (7)y

and the output signal is (using Equation (6) above)

00
y(t) =S (w) exp (jwt) dw

Nf" 2ccoY
2 S d g ( dgF(g, 1 r) dwH(w) exp (jwt)

e. xp jk ,vt, -,, TO , 2 + h2 +
*S p ovt'o-1)2 +h 2 + 1211 exp [j(w -. o) tj dt' (8)

E~vt' - 7)2 + h+ g21

This equation is, in general, quite difficult to evaluate because of the

complicated way in which both the space and time variables appear.

7



Some simplification of the mechanics of the integrals may be obtained

by carefully choosing the filter characteristics

As examples, consider the filter functions

HI(c•) =f(
0 elsewhere

H 2 (w) = sW) (W - W

0

where B is the filter bandwidth. For these cases Equation (8) may be

integrated to give

jkexp(jW t) C112 Ccz('n)
S (t) = dj dgF(g,,r)Yl 21TZ n 1 Vc I(nl)

ex jk([v(t,, + t)- +h 2 +2)/2) sin R t" t

[[v(t + t) - 711 + h + dt

for the flat top bandpass filter and

8



jkexp(jw t) 1 '2 Cc2.()

S (t)- 0 dcl ddF(•,•)
Y2 41r Ell c 0c()

C' I/2B ex(-kf2v(t" + - l+h2 &211/2)
dt (12

(t + t) - T112 + + gT/ 2

sin u
for the s filter. However, it appears that neither of these equations

u
can be integrated further in closed form.

At this point it is advisable to consider the physical counterpart of

the mathematical expression derived above. For a vehicle moving at a

velocity v and a height h above a plane surface which is uniformly radi-

ating energy at a frequency f , the frequency of the energy received at0

the vehicle from any point on the plane will be shifted from f by an0

amount proportional to the relative velocity with which the vehicle is ap-

proaching or receding from the radiating point. This is the well-known

Doppler frequency relation. It may be readily shown that the points on

the plane for which the received energy has a constant Doppler shift at

any given instant form a family of hyperbolas with a straight line directly

below the vehicle and transverse to its path as the limiting case corre-

sponding to zero Doppler shift. Therefore, filtering at f allows passage0

of only those frequency components which correspond to signals radiated

from the region between two hyperbolas on the plane surface as indicated

in Figure Za. This sampling region moves with the vehicle as it passes

-over the plane. If the portion of the plane which radiates is now con-

strained to be an antenna aperture, the effect is that of moving a samp-

ling function progressively over the aperture as shown in Figure 2b.



4-4-

Figure Za. Constant Doppler Frequeicy
Trace on Plane Surface

APERTURE

Figure 2b. Doppler Sampling Region on
a Planar Aperture
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Using this physical picture, a simplification of Equation (12) can

be made by recognizing that the limits of integration in t" are related

to the filter time constant and that the tiine constant is proportional to

the sampling region width divided by the probe velocity. For practical

values of the sampling region width (1/10 to 1/100 3f the aperture dimen-

sions), the integrand can be approximated in a manner which is similar

to the customary far field approximation of exp (-jkr) In the phase
r

factor, let

{[v(t,, + t) - I]2 + h2 + g1/2 + +2) [ ( + 12/

and, in the amplitude factor, let

2• 2 2112 h 1/

([v(t,, + t) -]2 +h 2 + •231/2 1 (1

With these substitutions., the integration in t" can be performed to give

jk •'2 ;c.(l

S (t) = exp(jwot) drI dtF(, TI)
Y2 Syl 1 0l(1)

ikv (vt - TI)
"exp["Jk(h2 + 1/21 L (h2 + 42)1/2

kv(vt - 71)

i1



The result is consistent with the physical operation of the system. The
s u function in the integrand is sharply peaked at vt = ?I and has the

u
effect of moving a sampling function across the aperture with a velocity

v. The resolution of the sampling function is dependent on the param-

eters k, v, B, and h. The transverse aperture variable g also appears

both in the sampling function and in the phase factor. In the sampling

function, the effect is an aperture resolution which is a function of the

transverse variable. This results from the fact that the lines on the

aperture plane corresponding to constant Doppler frequency are hyper-

bolas rather than straight lines. The appearance of the variable g in

the phase factor is caused by the fact that the probe antenna is in the

near field of the transverse dimension of the sampling strip. This de-

pendence is not required in the ii dimension since the probe is in the

far field for the width of the sampling strip in il

To summarize, within the accuracy implicit in the approximations

of Equations (13) and (14), Equation (15) represents the output signal

from a rapidly moving Doppler antenna system as it passes over a gen-

eral two-dimensional planar aperture. It has been assumed that the

Doppler filter has sin.u bandpass characteristics, and that the probe

antenna has an omnidirectional lower hemisphere coverage and ib .-Iov-

ing with a constant velocity v at a constant height h.

12



III. SPECIFIC APPLICATIONS

A large number of practical antennas may be represented mathe-

matically by three planar configurations: (1) the line source, (2) the

rectangular aperture with its aperture distribution separable in the

orthogonal planes containing the major dimensions of the aperture, and

(3) the circular aperture with a circularly symmetric aperture distribu-

tion. The Transverse Doppler Pattern Measuring Technique has been

applied to these configurations, and the results of the analytic investiga-

tions are presented below.

A. Line Source with Uniform Phase

Perhaps the simplest aperture to consider is the line source

with uniform phase. :n addition, a detailed study of the application of the

measurement technique to the line source provides valuable information

about basic system parameters.

For a line source of length a in il , Equation (15) reduces

to

sin .kŽv- (vt-]

S (t) = exp (jwot) d(A()
Y 0 S-a/z kv(vt - il)

where a constant phase factor and a multiplicative constant have been

omitted. The aperture sampling function is

"sin [,k-- (vt -

kv(vt - 71)

13



kv

Determination of the optimum values of the parameter • requires

that Equation (16) be evaluated for the particular aperture distribution

which is being measured. However, intuitive considerations can be used

to approximate the parameters. If the aperture dimension is a, the

resolution on the aperture can be expressed as a/N, where N is the

number of sampling widths within the aperture. If the sampling resolu-

tion is chosen to be the 3 db width of the sampling function, the following

relation of system parameters is obtained.

kva =1
5.6 BhN

An additional constraint on the system parameters is im-

posed by the approximations made in the evaluation of the t" integral

in Equation (12). The "far zone" approximation of the integrand re-

quires that

or

h 2a Z2 a >(2c

When this condition is substituted in Equation (18), the equation takes

the form

v 
a 

r 

(21

B N 5.6J

14



Therefore, the two equations governing the choice of the system param-

eters are

kh = -(2;

kv ka fr (2
B N 5.6a)

where the form of Equations (20) and (21) have been modified for conven-

ience in graphing. These equations are plotted in Figures 3 and 4 with

a as a parameter. The use of these curves to determine the operational

parameters of the measuring system can be illustrated by a typical

sample problem. Consider a line source 1000 feet in length operating

at a wavelength of 2 feet:

ka = 3142 and, for a linear resolution corresponding to

N = 10, ka/N = 314.2. From Figure 3 with a = 2, kv/B = 88.3. Thus,

v/B = 28.1. If v = 600 mph = 880 ft/sec, B = 31 cps. From Figure 4,

for kv/B = 88.3 and a = 2, kh = 4960, and h= 1580 feet.

Summarizing,

h = 1580 feet

v = 880 ft/sec

B = 31 cps

N = 10

It should be noted that the same value of a must be used for both graphs.

15
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The above example indicates that the system designer has a

considerable amount oi latitude in choosing the system parameters pro-

vided the parameters are selected consistent with Equations (22) and

(23).

To determine what effect the choice of the composite param-

eter K = k has upon the accuracy with which the aperture distribution
2 Bh

is reproduced, Equation (16) has been evaluated numerically in the form

S(T) = 5 A(y) iK(T -i11 dy (2EJ-1/Z K(-T - 1y)

for various typical uniform phase line source distributions and values

of the parameter K. The results of these calculations are presented
5in Scientific Report No. I on this contract on pages 19 through 23. It

can be seen that the accuracy with which the aperture distribution is

measured increases as the value of K increases. This is as expected

since increasing the value of K has the effect of narrowing the sampling

function and correspondingly, the sampling width. In fact, it may be

easily shown that, if the sampling function is the Dirac delta function

(the case for K---o-oo) , the aperture distribution is measured exactly.

It is also apparent that the best reproduction is obtained for those dis-

tributions which are zero at the ends of the aperture rather than for those

which have abrupt discontinuities at the ends. This is to be expected

from the analogy with Fourier representations of abruptly discontinuous

functions.

18



B. Rectangular Apertures with Separable
Distributions and Uniform Phase

If the conditions for a rectangular aperture with a uniformly

phased separable distribution, i. e. ,

F(MO) = f(g) f(r1 )

c (ij) = -b/Z

c 2 (n) = b/Z

SI= -a12

71 a/Z
712 = a/2

are introduced in Equation (15), it becomes

S (t) jk p(jt) a/2 b/2 -expjk(h2 +tSylt 2-T 0x ( So)-a12 S-b/Z Z

[kv (vty

kv(vt

It should be noted, as mentioned above, that the transverse variable

appears in both the phase factor and the sampling function. However,

for typical values of h and g, the variation in the sampling function

resolution is less than one percent over the full excursion in e and may

19



be neglected with very little error. With this approximation Equation

(25) may be written

SyMt= ik exp (jw t) df() exp jk(h 2 +

y 27rJ0b/ 2

a/2 sin k[-- (vt
d d f(ij) - - -- (2(

-a/2 kv(vt - ?)

Thus the dependence in t appears only as a constant which modifies the

amplitude of the expression. Therefore the discussion in the preceding

section with regard to linear arrays may be applied directly to the con-

sideration of rectangular apertures with separable distributions. A

second measurement orthogonally oriented in space (with the roles of

g and ?I in Equation (25) interchanged) is required to obtain the distri-

bution in g.

C. Nonuniformly Phased Linear and Separable,
Rectangular Distributions

If, in Equation (16), the aperture excitation function is as-

sumed to be complex, the equation has the form

sin~( t

Sy(t) = exp (jw0 t) 9-a/2 exp[(71 kv(vt - ?1) (27

where F(ql) = A(-1 ) exp[jo(,1a. (A(,) and 0(ij) are real.) Inpartic-

ular for the usual linear phase shift required for scanning,

20



((2

with 3 a constant. This equation has been evaluated numerically in the

form

11/2 sin [K(r -Y)

S(T) = A(y) exp (jY) K(d (2

for two aperture distributions, uniform and (1 - 2b ), and values of P

corresponding to a total phase variation across the aperture of 1, 5, 10,

and 20 radians. The results of the computations are presented on pages
5

28 through 36 of Scientific Report No. I on this contract. In general,

the reproductions of the amplitude compare favorably with those obtained

for the in-phase apertures, and reproduction of the phase is excellent

over the aperture. The exceptions occur for small values of K and

S= 20. The relation of these parameters to the physic system may be
kva

determined from a consideration of Equation (18). Since K - %,2 e

have

kva K
5.6 BhN 2.8 N.(3

or

K
N (3

2.8

where N is the number of sampling widths within the aperture. There-

fore, a value of K = 10 corresponds to a sampling strip approximately

0.28 of the aperture dimension in width. Since the aperture phase slope

21



is 20 radians, there is a linear phase shift of 5.6 radians or almost a

full cycle across each sampling width. It is not surprising, therefore,

that the phase and amplitude resolution is poor for these values of the

parameters.

The above values of phase variation over a large aperture

correspond to relatively small scanning of the antenna beam. For ex-

ample, for a 500X aperture, P = 20 results in a scan of approximately

two beamwidths. For scanning to an angle of Z00 (of the order of 120

beamwidths), a value of P 2 1075 is required. Numerical evaluations

of Equation (31) for this value of P and several distribution parameters

were also performed. These are definitely unsatisfactory with regard

to both phase and amplitude. As discussed above, however, this is not

unexpected. Even for K = 60, corresponding to approximately 21.4

sampling widths within the aperture, there is a phase slope of approxi-

mately 50 radians across a sampling strip. Since the signal out of the

filter is essentially an average signal from the sampling strip, it can be

shown that the amplitude of the signal tends to be zero except near the

edges of the aperture where a nonsymmetrical condition exists with re-

spect to the sampling function.

22



D. Circular Aperture with a Circularly Symmetric
Aperture Distribution

For a circular aperture of radius a/2 with a circularly

symmetric aperture distribution, Equation (15) has the form

22
ka/Z (7(a/2) - 'S (t) r exp (jW ot) d/ an dýF( 6, n )

S 0 Sa/2 (a/2) 2 
-

jkh 2 + gz)l/ (] + (2(32kv(vt - ?1)

where F(g,t) is circularly symmetric in g and i. This expression

poses considerable difficulty from a computational standpoint. The prob-

lems arise basically from the facts that Equation (32) contains a double

integral and approximately N summations are required in its numeri-

cal evaluation (as compared to N summations for a one-dimensional

integral) and, secondly, that the phase factor containing (h2 + 42)1/2

varies over a wide range during the transverse integration necessitating

the use of a large number of increments in performing the summation.

Some effort has been expended on obtaining an alternate formulation of

Equation (32) which is more amenable to computer programming. The

results of this work appears in Appendix A.

However, a more fruitful approach has been developed utiliz-

ing both mathematical and physical modifications. This development is

presented in Section IV. A.

23



IV. ALTERNATE SIGNAL PROCESSING TECHNIQUE

A. Multichannel Signal Processing

As was stated in the previous section, the difficulty in eval-

uating the general sampling function equation is due primarily to the

presence of both space and time variables in the integrands of the Four-

ier transform pairs. In the analysis that follows, alternate approxima-

tions are applied which allow the time variable to be transformed into

the aperture distribution, and the transverse variable 6 is eliminated

using the directional characteristics of a linear array sampling antenna.

The effect of varying the filter center frequency is also examined by

means of a more generalized filter function. The significance of these

modifications is discussed below.

Starting with Equation (8), let

sin 2Bn

H(w)
W -W

n

where

B = bandwidth

Wn center frequency, n = 1, 2, 3, . . . , N.

24



For this condition, Equation (8) becomes

S2 )cosin2 h2 2t

() ex (vt .- z + h +

Since

( 2B exp w(t-t] d =rr exp[ nw(t'-t t < 2B

S0 for all other t'

Equation (33) becomes

.4 2 .Tz Sc2(1) dt + 1/2B

Sy~t) = 3 d1 ,  3•~, k

711 Vl(•) t - 1/2B

. •" ")2 2 2]

exp jk (Vt' - 1) + h+ e.x dt'
2 2 2 expJc ~ exp (-jw t) d (3,

(vt' -n) + h + g

25



With the change of variable

ti = t" + t

dtt = dt" *

Equation (34) becomes

S (t) = -3 di dtF(gr) kill c• 10 1l() 1I/2B

The r adi cal

iV(t'5 + t) - I + h + =g +hZ + +(.n-vt) 2 + (vt") 2 - 2vt"(, - vt) (36

can be approximated by

2 2 2 vt"(TI - vt)h2 + + (t - vt)(2

in the exponent and

26



h2 + g + (T - vt)2 (38)

in the denominator. These approximations of course impose certain

limitations on the functions vt" and (vt - i). In particular, the ex-

pression (vt")2 has been ignored completely in both the phase and

amplitude factor. It is seen from Equation (36) that this term has its

greatest effect at (vt - n1) = 0 and ý = 0. This is comparable to the

on-axis quadratic ph4se error of a linear array, where in this case, the

"linear array" is the flight path -1 as illustrated in Figure 5. The max-
B

imum dimension of the "array" is v , and if the quadratic phase error

is to be ignored, this dimension must be limited.4

vt v~+)

\,, /
\ /\ /

\ /
\ /
\ /

\ /R
\ /

\ /
\ /!
\ 1/

Figure 5. Variations in R Associated with the Flight Path

Length -v
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Referring to Figure 6,

h12 + = R2 = (h + AR)2

h2 + = h + (AR) 2 + 2hAR

2Where AR is small enough to allow the deletion of (AR) , then

2B 2hAR

Using a i criteria for the maximum allowable phase error produces

2(- (vt") 2  = 2h Xh
max 8 4.

V2B

/AR

///
I/P

/4
/

/

Figure 6. Geometry for Determining the Limits on B
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This forces the condition

B v

on B. For v = 880 feet per second, h = 1580 feet, and X = 2 feet

B> 880 = 15.6 cycles
13160

which is compatible with the conditions of Section III. A. Since it has

been shown that the range of (ij - vt) is limited in the g, i plane, Equa-

tions (37) and (38) are comparable to the usual far field approximations.

Under these conditions, Equation (35) can be integrated with respect to

t" to give

j exp (jw t) ? 12 Cc2('1)S (t) = 3 di• d•F(•,¶) k
y 41rB S 111 Clln)

sin, vi t +W• - •

exp[Ijk h2+ g2+(¶nvt)2] -Vt) 2 o
(39

h2 + +(n -vt)2 1 kv(li -vt) -
2B h2 n]

2 + 2 1 + (7" -Lvt)2

Equation (39) differs from Equation (15) in that the term ('n - vt)2 appears
under the radical and the term wo - wo is present in the sinu sampling

u n u
function. The significance of the former will become more apparent as
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the analysis continues. Regarding the term w 0- wn, it is apparent that

this factor shifts the peak of the s functions in the il direction
u

ahead or behind the zero Doppler frequency trace as w is greater than

or less than w . Figure 7 illustrates the result of passing the received

signal through a multichannel filter bank. By proper choice of filter

frequencies, the g, -n plane has been divided into strips where the out-
th thput of the n filter is the signal transmitted from the n Doppler fre-

quency trace. The presence of the term (,n - vt) verifies mathematically

that the sampling system is of a traveling nature; i. e., with the excep-

tion of the aperture distribution function, F(gt, '1), each factor in the in-

tegrand of Equation (39) is a traveling function with velocity v in the ti

direction.

Vt

SLv

0

Figure 7. Sampling Strips Produced by a Multichannel
Filter Bank
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At this point it is advantageous to introduce the effect of re-

placing the omnidirectional sampling probe with a linear array. Figure

8 illustrates the geometry of a linear array and its trace in the (ý, 11)

plane. The array is oriented at the point (O, 0,1h) in the t, i, coordi-

nate system with its longitudinal axis parallel to the g axis. For an

assumed sn.u pattern, the argument u takes the formu

U r -sin
0

where L is the length of the array and • is the broadside angle measured

from the ý, n plane.

/-I

13

\

\\

i Figure 8. g, ,• Trace of a Linear Array Sampling Antenna
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Under these conditions the weighting effect of the array on a

signal received from the g,• plane can be expressed as,

sin- TLI
2  2 2

W,~ h-2++2
"�. h +(4(

h2 2 2
X h 2 + 1 d +T

where the space attenuation factor

1

h + + 2

has been included. Equation (40) can now be generalized by rotating the

trace about the ý axis through an angle a and then translating the skewed

strip along the i axis by the time function vt. The resulting expression

sine L cos a - (?I vt)

h 2 + 92 + vt)2

W2 L os a (71 -Vt) sin a

× 2 + Z +n - vt)2

represents the trace of a linear array carried by the mapping vehicle at

an angle a with respect to the direction of motion. Under these condi-

tions the expression for the'filtered signal is
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j exp (jW 0t)1 2, )0,xp (-kr')

g(t) = 41rB (r')2 (41

sn 1 kv(r1 -Vt) + W~ W si_, IL ~cota -( vt) sin a

2B 02 o k. - - h+ (1aý dtdr1
1 kv(tj - vt) -+ -W TrL g cos a - ( -vt) sin a

h2+ +(1 -vt)2 h2+ 2 +(r -vt) J

where

2 2 2 2(r,) h + •2+( - vt)2

Figure 9 illustrates the limiting effect of both the filter function and the

pattern factor of the sampling array. It is seen that the array has re-

duced the sampling strip produced by the filter to a sampling increment

with dimensions in the g direction comparable to those in the 71 direc-

tion. Hence far field approximations can now be made in the function

exp (-jkr')

(r ')2

with respect to both g and i

In order to select a suitable coordinate system for the far

field expression, attention is directed to the point (go, n1o + vt) in

Figure 9. This point is the intersection of the two lines along which the
sin uteminEuio

two -i terms in Equation (41) have maximum values. Hence, for
u
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Vt

77

• // -

*+ Vt' /0/Vt

/

Figure 9. Incremental Sampling Area Isolated by the Filter
Function and Sampling Array Pattern Factor

given values of L, wo' I n and a , the coordinates 6o and• ?IoI can be
sin u0computed by equating each S pargument to zero and then solving the

u

two simultaneous equations for ý and T1 -vt as follows. From

+ kv(0 - vt)ZB +4h -2 + 0 7 V)2 0 n

and

1rL[• cos a - (?l - Vt) sin a 0

0 + gh÷ + (I . vtl4
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h2 (n 0)2h((nn " O °)2 2 (4-•"vt)2  Z =-('')

(kv)2 
- (w n sec a

2 2( 2 2(-- - wo) tan a 2 (42

2 2 2 -o
(kv) - (w n - c 0o) sec a

The far field approximations in polar coordinates can now be constructed

for

exp (-jkr')
(r1) 2

at the (trI,.) origin and then translated to the point (go, ' + vt, 0)

as follows:

At the point (0, 0, 0)4

exp (-jkr') = exp (-jkR) exp Ijk sine r1 cos + +?I sin

(r.)2 R2

where R is a constant slant range and e and 4ý are the familiar azimuth

and coelevation coordinates illustrated in Figure 10.
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Figure 10. Polar Coordinates for the Far Field Approximations
Referred to the gil Origin

At the point (g OL? ý' + vt, 0)

exp (-jkr' exp (-jkR) ex .kin o +tsn
2 2 0x\sn~cs +L 10¶o~J5f

where now

R = .~J7~7+7)z =hkv

010 2 2,(kv) -(Wn- W ) sec, a

The result of this translation is illustrated in Figure 11. Equation (41)

niow becomes
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vt

R R

IT

o 0/

Figure 11. Polar Coordinates for the Far Field Approximations
Referred to the Point (o, no +vt, 0)

j exp, (jw ot) ex1 (kR q2 •c 201)

g(t) 0 exp (-F,
S41TB 2R S

R r 1  Cl(7)

*expk sin [ Cos +[I, -(rI'+vtf sin W W dtdq

where

sin kv(q -vt) +

W, B 4~h 2 + 9 2 + (nr - vt) 2+o n

snkv (__ - vt)

2B 2 2 o2 0
S+ + (TI - vt)
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Lcosa -('i -vt) sin a

h + 2 +(i vt)2

Although mathematically unwieldy, Equation (45) yields considerable in-

formation as tc the nature of the sampling system output. From previous

experience with the analysis of illuminated apertures, Equation (45) is

recognized as the far field diffraction integral of an irregular shaped

aperture with a tapered distribution. The weighting functions, W1 and

W2, clearly have a tapering effect on the distribution function F(g, 11),

and for a chosen attenuation criteria establish the boundaries of the iso-

lated area in the g, -1 plane. It is again emphasized that the pie sence

of the term (ij - vt) establishes the traveling nature of the integrand;

i.e.., the isolated area centered at the point ( o# + vt, 0), the slant

range R , and the vehicle position vt are all fixed with respect to each

other and travel at a constant velocity v in the • direction.

Because of the time dependence of the sampling function, the

limits of the integral and hence the distribution function, F(g, il) , are

also functions of time. This can be illustrated by making the approxi-
sin umations in the arguments of the -- functions,.

u

ýh2+g2 + (71 - vt)2= h2 + g 2 + 71,2 R (4

which is valid for small variations in g and rl about 0 and 1 1.K Now
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sin f_ [kv(1 -vt) +W - w
W1 = - (49)1 ]kv(tlR-'vtl) +w M ]

Ro 0 n]

sin [rL cos a (R - vt) sin a](

wz 2- 1(50)

"rL cos a- (7i- vt) a]

Figure 12 illustrates the sampling increment under the conditions of

Equation (48). The point, (go, 110' + vt) , has been computed in Equa-
00

tions (42) and (43).

*Vt

ER/

o//_,,0 / /7

/a ,vt 7ý 7o \,

(go$ 10 ' +vt, 0)

Figure 12. Incremental Sampling Area Using a Constant
Value of R in the Filter and Array Functions
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Using the 3 db attenuation criteria, the limits on • and t]

are computed from

1 [B v( ?I Vt + c - 1= 1.39 (5:

and

1TL F! cos a - (- vt) sin1.39 (5

From which follows

vt R2.78B + R
1-t Kv k kv no0

= - 2.78B + 1 (52
kv o

and

RX
= ± 1.39 R- sec a + ( vt - vt) tan a (5ý

Under these conditions, the limits of integration in Equation (42) are

RX
"C (q1 ) = (ri - vt) tan a - 1.39 sec a

"c (D) = (? " vt) tan a + 1.39 sec a
4iTL
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where

11 = vt + 1o k-- B
1 o kv

,+R
'? = vt + -+ -1 2.78 B

akv

It is seen that the limits on t are a linear function of 71 and t, and ?I

varies symmetrically about a particular value, (vt + o) , which is a
0

function of the time variable. Hence the distribution function F(g, TI) is

necessarily a function of t because of the nature of the limits of integra-

tion. This result can be obtained in a more straightforward manner by

the change of variable

= (5+ vt

Substituting the conditions of Equations (48) and (55) into Equation (45)

produces

j W 0x~c t - kR)] 2'zCc(
g(t) =2 F(t, n ' +vt)

4TrBR ST, cr'()

. exp(jk sin - cos0 + (•]- ino) sin W WlW dtd'(

where

sin _L Fkvr '~ +W
2 2B L_ R o wn] 5

I lFkv~i + w (5
wB L R 04 n]
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[ L gcosa-ill sina

= in - L R

w2 iL t[ cos a - 1' sina]

L R

c( = r1' tan a - 1.39 R- sec a

RX
c .10 ) = nI tan a + 1.39 R- sec a

7TL

(5

= o H (2.78) B
k v

112 Ti' +1- (2.78) B
akv

It is seen that the change of variable of Equation (55) has essentially

transformed the time variable, t, into the aperture distribution func-

tion, while at the same time removing it from the remaining factors

and limits of the diffraction integral. This is in complete agreement

with the foregoing discussion; i.e. , at any instant of time the output of

the filter represents the weighted aperture distribution, F(g, 1' + vt),

integrated over the limits,

RX
= rI'tan a 1.39 - sec a

and

71 vt= ? + vt ± •(Z. 78) B
S= •' +vt = r' vt4
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v

-(to TIo' 0)

vt

Figure 13. Geometry of the Moving Reference Frame, (t, 1T' c),
and the Fixed Frame (t, 1,)

Equations (56) through(59) can be interpreted as the far field expression

for a radiating aperture referred to as a moving reference frame, i. e.,

the coordinate frame of the sampling system. In the t, Ti' plane, the

incremental area is a parallelogram centered at the point t = Go and

' = ToI as illustrated in Figure 13. Equations (42) and (43) give the
0

values of ro' and t in terms of the parameters h, oo, w , v, and a.
0 0 n

Hence, it follows that for fixed values of h, wo , v, and a, variations

in the parameter w n produce a shift in the position of the point (top ?1)
n00

along the line t = il ' tan a . For the case of the multichannel filterbank

discussed previously, the trace of the linear array is divided up into N
th

sampling increments. The output of the n filter is in the form of

Equation (53) where the aperture distribution is now clearly a function

of time. The output of the nth filter can now be expressed as
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R
en-a (2 .78B)

g(t) jxp (t2 kRdn n
4BvrR R

n " -- a (2.78B)
kv

R X
1, tan a + 1.39 --- sec a

1TLR X 
d

11' tan a - 1.39 n- sec a

0k 0 C) sin, F(9, 1'+vt) WIW 2  (6

where W and W2 differ from Equations (57) and (58) only in that R is

replaced by R to denote the nth filter output.n

Figure 14 illustrates the geometry of a multichannel mapping

system. It is apparent that at any instant of time, the field distribution
th

over the n incremental sampling area corresponds to that portion of

the g, Tj plane which lies within the boundaries of the sampling increment.

Hence it would appear that each filter output provides a continuous strip

mapping of the radiating aperture as the mapping vehicle traverses the

g, n plane. Continuing along this line of reasoning, it would follow that

after suitable correction for the weighting factors, variation in R , etc.,n

the combined output of the multichannel filter bank would result in a

complete mapping of the aperture distribution in the ý, 71 plane. Since

the aperture distribution is continuously averaged over the dimensions

of the parallelogram-shaped sampling increment, the accuracy of the

measured distribution would of course depend upon the attainable reso-

lution. Unfortunately other factors, which at this point are not apparent,
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Figure 14. Sampling Areas of a Multichannel Mapping System

enter into the approach outlined above which greatly restrict the posi-

tion of the sampling increment.

Equation (60) can be analyzed further on a qualitative basis

by making the following simplifications: If the aperture distribution

F(ý, TI) is assumed to be essentially constant over the limits of integra-

tion, the term F(ý, ?I' + vt) W 1 W 2 can be approximated at each instant

of time by an average value A(t). This amounts to assuming a uniform

distribution over the sampling increments which varies uniformly in

intensity with t. Under this substitution it is possible to perform the

integration of Equation (60); however, it is recognized that the tapering

effect of the weighting functions W1 and W2 would tend to broaden the

beam and decrease the sidelobe level of the resulting diffraction pattern.

Under the assumptions stated, Equation (60) becomes
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R

gn +-2 (2.78B)

gnt ~)R exp Ejk sin 0('i 'i') sin dnS n

'1 -- 2 (2.78B)
kv

R X

11 tan a + 1.39 ---- sec a

Lexp jk sin ( - gn) cos d9 (61
3 R X

rI tan a - 1.39-n sec a

where

j exp ' .(wot - kRn)

4BwR
n

From Figure 11 the following relations are apparent

2 ,j 2

sin 6 =
R n

1'n

sink = n

+2 ,2

n n

COB =• -

S2 ,2"
+

n n
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Under these conditions Equation (61) becomes

BR n
+2.78 rr[• n kv' )d•

gn(t) C-X(t)B expL'ikR Inn( " d 1n
BR

In - 2. 78 n
•n kv

RX
lI' tan a + 1. 39 - sec a

exp jk L-I -t• dt
6J RX XP JR n

nL

Performing the integration with respect to t produces

sin 1.39 - sec ac
gn(t) C ¢ (t) exp j - ZRn

n 9 n nnn k ý n

BR
'I +2.78 -n-n

kvexp j -R---Inn+ ana n

BR n

n - 2.78 nkv

Integrating with respect to ?I' produces

sin (39 seca) sin 2.78v(?in' + tan a
n k t k(nn' + t tan a)

n n
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which can be written as

j exp [j(w t - kRn)] sin(2.78 , + t'tan a
gn(t) = A(t) 2

BTrk n' + t2 tana
n n

n + t sec (6

+ 2

The effect of ?I' and • on the received signal is immediately apparent
n n

from Equation (62). It is clear that the signal g n(t) is maximum for

1n' = tn = 0 independent of angle a. It is also clear that as the radial

distance

,2 2

P = d In + -nt

sin u

increases, the received signal is attenuated by the two -s terms
U

through a series of nulls and relative maximums. To illustrate this

effect, Equation (62) has been computed in the form of

This corresponds to the following parameter values

a = 370
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E v

where

B = 16 cycles

v = 1000 feet/second

L = 41.6 feet

y = 0.056

Figure 15 is a curve of Equation (63) where the radius dis-
0

tance p is now measured along the 37 diagonal passing through the

point (ý , "1n) and the point (0, 0) in the t, ij' plane. It can be concluded
n

from these results that the sampling increment must be limited to a

position directly under the probe. The signal from any other increment

centered outside this region will be attenuated in a manner illustrated

by Figure 15 which would clearly make the accuracy of the processed

signal questionable and in some cases nonexistent. Under these restric-

tions, Equation (60) can be greatly simplified by performing the follow-

ing substitutions. The center frequency of the sampling filter is taken

to be the transmit frequency w . No apparent advantage is gained by
0

turning the sampling array, hence the skew angle a can be equal to zero.

Finally, the coordinates ý and nI are now t 0 and o1
n n n 0nI =01

0. Under these substitutions, Equation (60) becomes

j exp [j(w t - kh)]9 3
go(t) = Brh2 Si [1.39] Si [1.39] A(t) (6ý
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Figure 15. Signal Strength Versus Sampling Increment Displacement

where Si is the tabulated sine integral. Equation (64) reduces to

A(t) = j 2Bh 2 exp[j(wot - kh)] go(t) (65)

where A(t) is the value of the aperture distribution, F(ý, TI), averaged

over a rectangular sampling increment centered at the point 9 = 0,

11 = vt. Figure 16 illustrates the geometry of this final configuration.
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Figure 16. Principal Plane Mapping by Means of a Single
Incremental Sampling Area

While the feasibility of mapping the complete aperture in one flight

transit has proven to be unrealistic, it is apparent that conventional

plane cuts can be obtained by making several passes over the radiat-

ing aperture. The signal obtained from each transit would be a con-

tinuous mapping of the strip tra.-ed out by the sampling increment. As

was stated before, the accuracy of the measured distribution depends

mainly upon the size of the rectangular sampling increment; i. e., the

finer the resolution the more nearly the functioft X(t) represents the

distribution function at the point (0, vt) . Also, the limitations on the

position of the sampling increment have been shown to be a direct result

of the size of sampling increment.
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This last observation can be further illustrated by a simple

application of diffraction theory to the conditions of the isolated samp-

ling increment. Consider a 1000-foot circular aperture which is to be

measured by a vehicle traveling at an altitude of 1000 feet over the cen-

ter of the radiating plane. Each isolated portion cf the aperture can be

thought of as exhibiting a diffraction pattern which is a function of the

increment size. If the mapping vehicle is contained within the half power

beamwidth of the most distant increment, it is clear that the beamwidth-1 500o

of the increment must be of the order of 2 tan -1-50= 53 . This cor -1000

responds to a radiating aperture with maximum dimensions of less than

a wavelength.

Several factors affect the resolving power cf the sampling

system. Increasing the altitude of the probe decreases the off-axis angle,

but this effect is nullified by the increased area subtended by the samp-

ling antenna beamwidth. Increasing the velocity cf the sampling vehicle

would produce a greater Doppler shift and hence a greater filter resolu-

tion for a given bandwidth, but this occurs in 3ne dimension only, and it
v

has been shown that the ratio v is subject to a maximum critical value.

One possible approach to this problem is synthetic aperture

type signal processing. This is analyzed in some detail in the following

section.

52



B. Synthetic Aperture Processing

One possible approach to obtaining greater sampling resolu-

tion is the application of synthetic aperture type processing to the signal

received from the sampling area. In recent years this system has been

developed in connection with ground-mapping radar to such a degree that

azimuth resolutions (independent of range and wavelength) of the order

of a few feet are obtainable. Since most of the material available on this

subject is still classified, only a brief discussion will be presented here.

In ground-mapping radar applications, the transmitting

antenna used in a typical synthetic aperture system is "side looking",

relatively narrow beam, and of physical dimensions compatible with

airborne requirements. Range resolution is obtained by conventional

pulsing techniques while azimuth resolution is obtained by recording a

series of returns from each point target and then processing the recorded

data such that the physical antenna becomes an element of a large syn-

thetic array. The number of elements in the array is equal to the num-

ber of pulses recorded from each point target. Figure 17 illustrates

the geometry of a typical airborne ground-mapping radar.

It is apparent that the- number of return pulses and hence the

length of the synthetic array is a function of the pulse repetition rate and

the length of time that the point target at P lies within the specular area

of the antenna beam. Hence, flight velocity and beamwidth are also

factors governing the length of the synthetic array. Broadly speaking,

the length of the synthetic array will be comparable to the longitudinal

dimension of the specular trace and will have the conventional resolving

power of a physical antenna of that length.
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Figure 17. Geometry of a Side-Looking Synthetic Aperture
Processing Ground-Mapping Radar

In developing a suitable processing system it can be assumed

that the coherently pulsed signal is continuous. Under this condition,

the returned signal from a particular point target is continuous with its

frequency modified by a time and range dependent Doppler effect. There-

fore each point target generates its own continuous and unique Doppler

history as it passes through the specular trace of the physical antenna.

For example, in the case of a broadside looking antenna (i. e., main

beam normal to the direction of flight), the frequency of the received

signal changes from a higher to a lower value than that of the transmitted

frequency as the target enters and leaves the specular trace. Further,

when the target is exactly at the broadside position, the transmit and

receive frequencies are the same. This configuration has been used in

connection with a coherent reference oscillator and a pulse integration
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system in which the complete return from each target is compressed

about the "zero beat" point produced by beating the time-varying return

signal against the stable local oscillator.6 The zero beat point and

hence the center of the compressed return signal serves to identify the

azimuthal position of the point target with respect to the mapping vehicle.

Processing techniques have been developed using vector

addition, cross correlation, and filtering approaches. However, in a

recent publication it has been shown that these three approaches are
7

equivalent, hence in analyzing a particular aspect of a given system,

the most applicable approach should be used.

Although grossly over -simplified, the foregoing discussion

contains sufficient information for deducing certain conclusions regard-

ing the mapping of radiating apertures via synthetic aperture processing

techniques. As in any pulsed radar, the operation of a synthetic aper-

ture system consists of periods of transmission, during which time wave

trains of finite length are launched towards the target area, followed by

periods of reception during which time the reflected portions of the trans-

mitted wave are received. Hence during the period of reception, the

target area is analogous to a two-dimensional array whose elements

consist of all the point targets which lie within the specular trace of the

physical antenna. Therefore, it would appear that the transition from

ground mapping to aperture mapping is a logical and straightforward

step. However, further investigation into the nature of the quasi-point

sources on which the analyses of the two "radiating apertures" are based,

brings out complications which appear to make the two systems incom-

patible.
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Continuing the analysis of the specular trace on the basis of

a two-dimensional array, it is apparent that the energy .distribution on

each element (i.e. , point target) is dependent upon the reflection coef-

ficient and the position of the point target with respect to the illuminating

and receiving antenna. Hence the target area as an array is made up of

an arbitrary number of elements with distributions essentially random

in both magnitude and phase. Clearly this is a necessary condition for

the operation of synthetic aperture type processing (i.e., each target

must have a unique Doppler history during its passage through the spec-

ular trace). For example, consider a target area made up of a large

number of identical, closely-spaced point targets. Under these condi-

tions the reflected energy is no longer made up of discrete incoherent

wavelets. Instead, as the separation between targets is decreased, the

reflected wave trains from adjacent targets begin to overlap in a well-

defined manner. The result is threefold.

1. The overlapping of the returned wave trains makes pulse
ranging impossible.

2. The Doppler frequency histories cf adjacent targets begin
to "look" alike.

3. Reinforcement and cancellation resulting from the coher-
ence of the reflected wavelets produce the usual lobed
pattern associated with any aperture which is illuminated
in an orderly manner.

Any of these three effects would make the synthetic processing system

inapplicable. However, for an actual illuminated aperture, the third

effect as discussed in the preceding section is probably the most deci-

sive. Hence, it appears that the coherent nature of the quasi-point dis-

tribution of a radiating aperture is incompatible with the requirements

of synthetic aperture proceesing.
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Having established the limitations of the foregoing analysis

as regards the number and position of sampling areas, any further dis-

cussion will be restricted to the conditions of the area directly under the

probe. In general, the distribution over an isolated pcrtion of an arbi-

trarily illuminated aperture will be nonlinear and asymmetrical in both

amplitude and phase. The added weighting effect of the filter function

and sampling array pattern produces an aperture distribution that is

extremely complex. Fortunately, only a qualitative analysis is needed

and this can be accomplished with a sufficient degree of accuracy from
8

line source considerations. As reported by R. C. Spencer, the diffrac-

tion field of a line source can be analyzed in terms of the line distribu-

tion moments. For an arbitrary distribution, f (x', the normalized

diffraction integral is,

g(u) = f(x) exp - sin ()) exp '-JHx) dx

where

g(u) = Franhofer diffraction field

f(x) = amplitude distribution

a = length of the line source

X = wavelength

exp (-jpx) = linear phase deviation
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Equation (66) can be expanded into its infinite series with the result

g(u) =o - - u +. u +j lu-7., u +,u(-...6

where

= T sine -0

Ik = xk flx) dx
ý-1

Lk is referred to as the kth moment of f(x). The power pattern P(u)

follows from the sum of the squares of the real and imaginary series of

Equation (67),

=2 )2u2 o4 1I113 4
P(u) :1o "(1o y'- +( 12 - u +L4Ju -'

Multiplicative constants have been deleted in Equations (66) through (68).

Several important factors are immediately apparent from

Equations (67) and (68). First, it follows from the definition of 4k that

even and odd distribution functions produce respectively, pure real and

pure imaginary diffraction field series, which are again respectively

even and odd functions of the variable u. In the general case, both

real and imaginary components are present, however. Equation (68)

indicates that the power pattern is still symmetric about u = 0 and is a
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principal maximum there. Thus, the only asymmetry resulting from an

arbitrary amplitude distribution is the sign reversal in the imaginary

component of the field intensity which accompanies the sign reversal of

the u variable. The effect of the linear phase distribution can be seen

from the relation4

u = -sine-

ira

For u = 0, -2- sine = p. hence the principal maximum or direction of

the main lobe is skewed by an angle p.

From these results, the following assumptions can be made

regarding large apertures with arbitrary amplitude distributions and

moderate but continuous phase variations. A small isolated area cen-

tered about a point in the plane of the aperture exhibits a symmetrical

power pattern with the principal lobe axis normal to the phase front at

the point. The on-axis field intensity is proportional to the zero distri-

bution moment which is simply the aperture distribution integrated over

the incremental sampling area, and the extraction of relative phase and

amplitude from a signal of this type can be performed in a conventional

manner.
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V. ERROR ANALYSIS

The errors associated with performing pattern measurements with

the Transverse Doppler Pattern Measurement Technique fall logically

into two categories: one includes the inaccuracies which are inherent in

the technique; the other consists of those errors which arise from devia-

tions in the assumed values of system parameters.

The former are, in general, functions of the rstem aperture re-

solution, where the resolution is dependent on the composite parameter
kB" in the longitudinal dimension, and on the directional characteristics

2 Bh
of the sampling probe in the transverse dimension. Since the resolution

increment is of finite dimension and the measuring technique involves

essentially an averaging of the response received from the increment,

the ability of the system to resolve local variations from the average is

limited. In the case of the line source, the response is averaged only

over the longitudinal dimension of the sampling increment. For a two-

dimensional aperture, sampled by an omnidirectional probe, the response

is averaged over the transverse dimension of the aperture as well, and

the filtered signal is weighted by both the aperture distribution in the

transverse direction and the transverse extent of the aperture.

However, if a linear array is used for the sampling antenna, the

transverse dimension over which the signal is averaged is reduced to a

length proportional to the beamwidth of the linear array. Under this

condition, the weighting effect of the aperture distribution in the trans-

verse dimension is lessened; however, the effect of the pattern factor of

the linear array must be accounted for in the final result.
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To determine the effect of errors attributable to system limitations

in the measurement of the aperture distribution, far field patterns were

computed from the "measured" aperture distributions of a line source

500. in length for several values of system parameters and aperture dis-

tributions. These cases are plotted and discussed on pages 41 through

57 of Scientific Report No. 1.5 In general, the patterns computed from

the measured distributions are in good agreement with the exact patterns

in the main beam region, but are optimistic compared to the exact pat-

tern outside of this region.

Errors which are the result of variations in system parameters,

e.g., height, velocity, operating frequency, etc., during the measure-

ment interval are somewhat more difficult to analyze quantitatively.

However, what qualitative effects these deviations will have are readily

deduced from a consideration of Equation (15). Basically the system

parameters which may be expected to vary appear in three places in

this expression: in the amplitude factor, in the phase factor, and in the

resolution of the sampling function.

Since the time required for taking the measurement data (or aper-

ture fly-by time) will be of the order of two seconds, variations in the

transmitted frequency during this time will be very small, perhaps of

the order of one part in 108 at UHF.9 The frequency dependence appears

as the parameter k(R) in all three factors of the equation, and since

Ak = k &f-, variations of thi3 order in frequency have little effect on

system accuracy. Even in the phase factor a variation in k of approxi-

mately two parts in 103 are required for 7r radians of phase change with

h = 1500 feet. An additional condition on frequency stability has been

assumed in the filter function of Equation (10), i.e.
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sin 2B )

0

However, since the band of frequencies about wo is essentially contin-

uous (except near the ends of the aperture) because of the Doppler con-

tributions, a moderate change in w corresponds to sampling a strip of

the aperture which is located either slightly ahead or slightly behind the

probe vehicle rather than directly beneath it. For example, at a velocity

of 880 ft/sec, a variation in frequency of one part in 108 causes an angu-

lar shift of the sampling region of approximately one percent.

Probe height, h, appears in both the phase factor and the argu-

ment of the sampling function. In the sampling function, the effect of

changes in h appear as variations in the resolution of the aperture. As

can be seen from Figures 5b, 20, and 21 of Scientific Report No. 1,

changes in the composite parameter, K = kva/2Bh, over a large range

(2 to 1) have a relatively small effect on the accuracy of the aperture

distribution measurement and the corresponding far field pattern once a

certain minimum value of the parameter K is exceeded. In view of this

fact, it appears that small changes in the values of any of the individual

factors of K will not limit the accuracy cf the measurement technique.

The height, h, appears also in the phase factor. The phase may

be written as

2= kh 1 (6
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and varies essentially as kh. Since h is of the order of one to two

thousand feet, very small changes in h percentage-wise can cause the

phase to shift appreciably. For a linear change in h, the effect is that

of a linear phase shift across the aperture and can cause difficulty.

Therefore, it appears that it will be necessary to limit the variation in

h to the order of a wavelength during the measurement period. How-

ever, in the event that large flight path deviations, in terms of wave-

length, are unavoidable, it is possible to detect such deviations by means

of a Doppler and/or inertial stabilization system such as those used in

conjunction with ground-mapping radars. Such a system provides con-

tinuous monitoring of pitch, roll, altitude, and velocity; hence the out-

put signal can be used to compensate for any deviations in flight path by

electronically scanning the sampling antenna, adjusting the filter fre-

quencies, and by varying the phase of the received signal in accordance

with incremental changes in altitude.

As was pointed out in Section III, the presence of a large linear

phase distribution in the radiating aperture necessitates a modification

of the mapping technique. Fortunately the solution to this problem is

straightforward and is contained in the general expression for the Doppler

frequency shift.

Referring to the geometry of Figure lb, the frequency of the signal

received from a point in the g, 71 plane by the probe at P is given by

o dr
6+ r(7
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where c is the velocity of light and the term

o dr
c dt

is the Doppler frequency shift.

It has been shown that the radial distance, r, connecting P and

the point (g, -n) is of the form

r = (vt - ) +h +2 (7

Therefore, the Doppler frequency equation is,

W v(vt -

(' W~ + 0(7;
d 0

Sc (vt -7)z+ hz+2

It should be mentioned that the proper sign has been chosen for the radi-

cal of Equation (72) so that the Doppler shift is positive for ?I > 0 and

negative for 71 < 0.

For constant Doppler frequencies Wd = W. i = 1, 2, 3,

Equation (72) becomes

Sv2(vt -)z

( o 2 [vt .T)+2 +h +2+
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which reduces to

(vt - Lc2(1h (74

For

2 2
(. V

c2 2W0W >1

1 0

as is the case here, Equation (74) represents a family of hyperbolas with

foci shifted along the i' axis by the linear function of time, vt.

As was stated earlier, the physical significance of this is that there

is associated with a bank of filters at the probe P, a grid of hyperbolic

contours in the g, 71 plane which travels in the same direction and at the

same velocity as the probe.

The effect of a large linear phase deviation will now be considered.

The geometry of Figure 18 corresponds to that of Figure lb with the ex-

ception of the tilted plane W which represents a wavefront emanating

from an aperture in the g, tj plane which has been electronically scanned

through an angle e in the ;, n plane. From the geometry, the slant

range r connecting the probe at P with a general point in W is

2 2 2
r - + ( - vt)2 + (h -,
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Figure 18. Plane Wavefront of an Electronically-Scanned Aperture

where

tan 0

Therefore

dr _-v(T - vt)

dt 92 fn ( O 2 Vt) + (h - rj tan 0)2

Hence the frequency of the signal at P is

W V( - vt)

•d 0 1o2+2"2

ct9 +1(1 - vt)2 + (h - r1 tan 0)
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Equation (75) differs from Equation (72) in that the term (h - tan 0)2

2
appears under the radical instead of h . Because of this, Equation (72)

does not represent a traveling grid of fixed contours such as was devel-

oped from Equation (72). By following the procedure used to obtain

Equation (74), it can be shown that the resulting traveling grid is made up

of contours in the ý, ?I plane which change shape as a function of time.

However, one important exception exists which is more readily seen if

the g, tj plane is rotated into the plane of the phase front. Figure 19

illustrates the results of this rotation. The expression for r is now

12 2 2r - + (71 - vt cos 8) + (h - vt sin 0)

h r

-

S~/

// .1

Figure 19. Plane Wavefront of an Electronically-Scanned
Aperture Rotated into the 4, q Plane
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W 01( _E -vtcos e)v cos e +(h +vtsine)v sine]W d =-- + 22(7

cd'2 +(n -vt cos e)2 +(h -vt sin e)2

It can be seen from Equation (76) that the frequency of the signal received

from the point directly under P is independent of t for if the ý, , coor-

dinates of P (i. e., 0= , i- vt cos 9) are substituted into the equation,

the result is

W (h - vt sin 9) v sin 9
•d= W +

d c(h - vt sin 0)

or

d W + -2 v sin 0 (7

Hence it can be concluded that if the slant range r is at all times normal

to the wavefront, the frequency of the signal received from the incre-

mental area will be constant and will differ from the fundamental frequency

Sby an amount proportional to the component of velocity in the direction

of r. Referring to Figure 20 it can be seen that this amounts to shifting

the slant range r ahead of the vertical by an amount equal to the scan

angle e.

An alternate approach to this analysis is the consideration of the

time rate of change of phase produced by the motion of the probe with re-

spect to a constant phase front. Referring to Figure 20, if 9 is fixed and
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r is extended to point Pt on the -q axis, it is clear that the length PP'

does not change as P traverses a path parallel to the n axis. Hence

the Doppler shift is zero, however; the change in phase which occurs at

the moving point PI is not zero and can be expressed as

dt = w tan

where (l i1 tan is the linear phase distribution in radians per unit

length. From the geometry of Figure 20,

p

8_W

Figure 20. Position of Slant Range r for a Constant Doppler
- -- FrquecyShift
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'1 =htan 0+ vt

Therefore

dý 2'r tane- !LFh tane0+ vt1
dt x d

0

Zwrv
7 - tan e

0

which in terms of frequency reduces to

w = w tan 0 (7
0oc

Equation (78) is equivalent to the last term of Equation (77), for in both

equations the frequency shift is given by the product of the component of

velocity normal to the wavefront and the factor W

Hence, it may again be concluded that the frequency of the signal

received from an ir.z-remental area centered about the point PI is con-

stant provided that r is normal to the wavefront.
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VI. EXPERIMENTAL DEMONSTRATION

An analytic investigation of this type should be accompanied by an

experimental program designed to verify the mathematical description

of the system and to establish the practical feasibility of the approach.

Generally, this experimental program can be of two types. One is a pro-

gram carried out in the laboratory, where modeling or scaling of the

physical components is done to achieve convenient values of size, fre-

quency, etc. The other type is an actual field measurement program

with a minimum or breadboard system using conveniently available

existing facilities. Application of each of these avenues of approach to

an experimental demonstration of the Transverse Doppler Pattern Meas-

urement Technique is discussed below, with emphasis on performing an

adequate demonstration with a modest amount of time and effort.

As indicated in the material presented above, this technique is

most readily applied to linear arrays or rectangular apertures with sep-

arable distributions. Accordingly, the experimental programs discussed

assume linear arrays as the radiating structures. Extension to rectan-

gular arrays is, of course, straightforward.

A. A Laboratory Demonstration

Since this program is concerned with the measurement of

the patterns of large antennas (large both physically and electrically),

modeling or scaling of the radiating structure and the probe vehicle is

required for work in the laboratory. Reduction of both the physical and

electrical sizes of these structures may be accomplished by scaling in

frequency. If one somewhat arbitrarily chooses 100X as a typical aperture.
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electrical length and 10 feet as a practical length for experimentation in

the laboratory, these sizes can be obtained at a frequency of 9830 Mc.

Using Figure 3 (page 16), for ka = 628.4, a = 2, and a linear resolution

corresponding to N = 10, kv/B = 17.6. With B = 30 cps, v = 8.4 ft/sec.

From Figure 4, kh = 197, giving h = 3.14 feet. Summarizing, the sys-

tem parameters then are:

L = 1Ok = 10 feet

f = 9830 Mc

h = 3.14 feet

v = 8.4 ft/sec

B = 30 cps

N = 10

A quite compact arrangement may be designed with these parameters.

The main problem is, of course, that any reasonably-sized probe vehicle

is too small to carry the required signal processing system. Therefore,

a means of transferring the signal received at the probe antenna to a sta-

tionary signal processing system must be provided. Perhaps the simp-

lest way is to transfer the signal with a coaxial transmission line of

sufficient length to allow the probe vehicle to move freely over its entire

path.

A schematic of this laboratory system and a conceptual

drawing of its layout are shown in Figures 21 and 22. In Figure 21 the

linear array is indicated at the left with the movable probe antenna shown

to the right of it. A portion of the transmitter signal is used as the local

72



V

f +ff f2o + d

Mixer

Figure 21. Schematic of Laboratory Experiment

oscillator signal and mixed with the signal received by the probe antenna

to form a homodyne (or 0 IF) receiving system. The mixer is followed

by a low-pass filter to provide the resolution on the aperture, phase, and

amplitude detector, and a dual trace recorder.

By using a portion of the transmitter power as the local

oscillator signal, good audio frequency stability can be obtained without

requiring excessive stability in the RF signal. Narrowband filtering of

the Doppler component can then be accomplished without difficulty.
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Figure 22. Conceptual Drawing of the Laboratory Experimental System

Figure 22 is an artist's conception of the experimental setup.

The antenna whose far field pattern is to be measured consists of a 10OX

X-band waveguide linear array. Suspended above the array on a nylon

line is a small carriage for supporting the probe antenna. Since the aper-

ture length is 10 feet, a probe path length of approximately 20 to 30 feet

will be required to adequately simulate actual full scale measurement

conditions. A high speed synchronous electric motor with its shaft speed

reduced in a gear train supplies the motive power for the carriage. The

motor is located at one end of the probe carriage path and draws the car-

riage toward itself with a nylon cord. A second nylon cord, attached to

the opposite end of the carriage, leads to a device which provides a small
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constant tension opposing the motion of the carriage. This insures that

the probe velocity will remain essentially constant over the major por-

tion of its travel. An automatic limit switch is provided to disengage the

motor as the extremity of the carriage travel is approached. The probe

antenna is an X-band, half-wavelength dipole suspended from the car-

riage. The RF signal received by the probe antenna is fed through a

length of flexible miniature shielded coaxial transmission line to the

signal processing network, then detected and recorded. The recorded

trace is a plot of received signal versus time and corresponds to the

aperture distribution. Both phase and amplitude detection must be per-

formed in order to determine the distribution. The far field character-

istics are then determined by integration of the aperture distribution.

Evaluation of the system's performance in measuring vari-

ous aperture distributions may be made by measuring the aperture

distributions of the antennas and comparing the far field patterns com-

puted from the measured aperture distributions with the actual patterns

measured by conventional means in the far fields of the antennas. Fab-

rication of individual slot waveguide arrays for a variety of amplitude

and phase distributions is required to obtain the test arrays.

An alternate arrangement of the experimental setup is

shown in Figure 23. Here the probe path is vertical rather than hori-

zontal and some of the difficulty in maintaining a constant distance be-

tween the probe and the aperture is alleviated.
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Figure 23. Conceptual Drawing of Alternate Laboratory Experimental
System
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B. Field Demonstration

Because of the availability of several large antennas located

throughout the country, it is possible that a full scale demonstration

might be preferable to the scaled experiment outlined above. Certainly

in the final analysis, a full scale program must be carried out; hence if

the laboratory experiment can be avoided, much time and expense will

also be avoided.

The apparent advantages of a full scale approach then are

twofold:

1. Elimination of the design and fabrication of
a transmitting antenna.

2. More realistic results.

For example, consider the long linear array located near Archer City,

Texas (part of the U. S. Navy's space surveillance system); this array

has a maximum linear dimension of one mile. At the frequency of

operation, this corresponds to a length of the order of 1000 wavelengths.

Typical parameters for an antenna of this size are:

a =2

N= 60

V = 840 ft/sec

B = 30 cps

h = 1190 feet

"These values have been computed from the curves of Figures 3 and 4.
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Using these parameters, the experimental procedure differs

from that of the laboratory technique in essentially two ways:

1. A portion of the transmitter output can no longer
be used as a local oscillator signal.

2. Variations in probe path, both direction and
velocity, must be considered.

Of the former, no great difficulty is encountered since local oscillators

with frequency stability factors of the order of one part in 108 are well

within the state-of-the-art.

Concerning probe path variations, as has been stated in

Section IV. B, errors of this type can be detected and compensated for

by means of a suitable inertial system; however, since the fly-by time

is low, it is felt that these effects can be ignored in the initial experi-

mental investigation.

It should be noted that all data processing and recording

equipment can be carried by the mapping vehicle, where the stable local

* oscillator frequency is determined by the desired off-set from the ground

transmitter frequency.

Since the array considered here is a discrete element array,

the aperture distribution is available by actual element measurement.

Hence the antenna provides an accurate experimental standard. Figure

24 illustrates the mapping vehicle, the test array, and the data pro-

cessing system. The sampling probe is a single element which provides

large angular coverage. The received signal is mixed with a signal

equal in frequency to the ground-stationed transmitter, and the output
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Mixer

of the mixer is then passed through a low pass filter. The output of the

filter then contains the desired information concerning the average phase

and amplitude of the energy radiating from the sampling strip.

It is felt that data obtained in an experimrent of this type would

provide, at a nominal expense, much information on the feasibility, limits,

and accuracy of Transverse Doppler Pattern M•,easuremrents.
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VII. SUMMARY AND CONCLUSIONS

A mathematical description of the Transverse Doppler Pattern

Measurement Technique has been derived on the basis of the scalar dif-

fraction equation. In the initial phase the effect of Doppler frequency

filtering was analyzed and the results of this analysis were applied to

specific and one- and two-dimensional apertures. The data computed

from this application have established certain limitations as to the ver-

satility of a Doppler filter sampling system. Specifically, it has been

shown that this technique provides a sampling resolution in one dimen-

sion only and is therefore most applicable to linear arrays and rectan-

gular apertures with separable distribution.

In an attempt to develop a technique suitable for more general ap-

ertures and distributions, a second analysis was performed which included

the effect of a linear array sampling antenna. Because of the additional

resolving power of the directional sampling antenna, it was possible to

derive a sampling function which isolated, within the boundaries of an

arbitrary two-dimensional aperture, a rectangular sampling area of com-

paratively small dimensions.

In an attempt to extend this approach, the effect of multichannel

processing was examined in which the radiating aperture was broken up

into a series of incremental areas by means of a multichannel Doppler

filter bank. It was found that while this concept is mathematically feas-

ible, limitations are again encountered because of the directional depen-

dency of the signal received from each sampling increment. Since this

directional dependency is a function of sampling increment size, an at-

tempt to increase the sampling system resolution was made by utilizing
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the concept of synthetic aperture processing. Here again the coherence

of the quasi-point sources which make up the aperture distribution proved

to be detrimental and it was shown that synthetic aperture processing is

not applicable to the Transverse Doppler Pattern Measurement Technique.

It has been concluded that the technique developed, while in some

respects limited, are suitable for measuring with good accuracy a vari-

ety of large one- and two-dimensional arrays. The extent of the accu-

racy is of course dependent upon many factors and has been discussed

in some detail in the Error Analysis section of the report.

Specifically, it is felt that long linear arrays and two-dimensional

arrays with separable distributions can be mapped with a minimum of

equipment and expense. Hence, two experimental procedures have been

outlined c.a this basis which are designed to prove the feasibility of the

analytic results.

However, it is emphasized that while the possibility of mapping an

entire aperture in one probe transit does not appear to be feasible, a

technique has been developed which provides for the principal plane dis-

tribution mapping of any aperture.

In the case of a one-dimensional array, the result is of course the

linear distribution. For a two-dimensional array with separable distri-

bution, sampling by means of a simple probe produces a mapping of the

aperture distribution in the direction of probe transit which is weighted

by the transverse aperture distribution. In this case, a second orthog-

onal cut is needed in order to separate the mutual weighting effects of

the distribution functions. If a linear array sampling probe is used,
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principal plane aperture distribution cuts can be obtained from any type

of radiating aperture. It has been shown that even the large phase de-

viations associated with electronically-scanned apertures present no

problem.

Hence, it is apparent that the Transverse Doppler Pattern lMeas-

urement Technique is feasible and has great potential in the expanding

field of large aperture antennas. It is felt that the next logical step is

the development of an operational system. As outlined in Section VI, a

scaled laboratory experiment or a rudimental field measurement would

provide much information concerning the actual hardware needed to

detect, process, and record the sampling system data. Having accom-

plished this, it remains to refine the system resulting in a reliable and

accurate system for obtaining the radiation characteristics of large

aperture antennas from measurements in the near field.

1

4

08



APPENDIX A

A formulation which appears to somewhat simplify the computa-

tional difficulties of Equation (32) may be obtained by retaining the aper -

ture coordinates in polar form. Under these conditions, the equation

corresponding to Equation (8) is

(t)= - 2 d Ea pF(p) dp H(w) exp (jwt) dw

22 71/2

oo exp jk[ vt' - p sin ý)2 +h 2 + p2 cos ý] - j(W -) t
J- 1- 1 /2 dt'

-ovt' -psinI)2 h +P2 cos ]/

=( 2w) d• pF(p) dp H(w) exp t v p sin d)

(Z r r E0 20 2W 2A

exp -jkL W 0 (.vt' - psin4) + (vt' - psin i) 2+ h + P o

*EG kv dt'. (

d(vt' - p sin 2 +h +p cos 2

As shown in Appendix B, the t' integral may be performed to give

V ( J 2 2 W0
SH(l) k(h +p cos 4)v o

83



where HM (z) is the zero order Hankel function of the first kind.
0

The integral in w may be performed also for

H(cw) = I [ (8
(W " Wo) 7T

with the approximation 0) < < < 1 give

khI

IT It- 2n

0 t p sin L{j >

10T2j

With the substitution of Equations (80) and (82), Equation (79) becomes

--kexp(jwot) §2wr Sa ) k4 2 2 )(Sy(t) = v dýb pFlp) H(1)o 4(h2 + p2 cos2 d (8

vT

for jvt-p sinai < - and

s (t) = 0 (8

for vt - p sin 4'I > -T. Equation (83) still contains a two-dimensional

integral, but it has somewhat different properties from Equation (15): The
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sampling function is not expressed explicitly, but appears implicitly

in the limits, and the only approximation made in the evaluations is

that

W "
) <<< (8

This condition is met very well for typical system parameters, such

as those discussed above.

That Equation (83) has basically the same character as Equa-

tion (15) may be seen by considering the asymptotic form of H( l)(Z)
0

for large values of the argument

2 2 exp (jk~h 2 c

H(l)[k hZpcs2J- J 8
0 P 2 2

k h + p co'3

With this substitution, the form of the two equations is identical (p cos tý
sin u-) with the exception of the n sampling function and an amplitude

(h 2 2 u
factor (h + p cos 4' appears as the fourth root rather than the square

root). However, as mentioned above, the sampling dependence is im-

plicit in the limits of Equation (83).
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APPENDIX B

To evaluate the integral

exp jk0 'o( i vl psn v + h + p2 COS2I41J
[ 4 5inLI vt'

ý(p sn v- + h + pZ cos2L

the change of variable

X p sin ivt' + kv i+ (p sin 4)vt') 2

4h +~ p 2 os2 ui00 + p 2Cos 2I

leads to a form with a more obvious solution.

Ii = expfý J - 7 cos

v+x

Now if the variable is changed once more to

x
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and the function

k fho + )2 Cos L ]

is designated by z, the familiar Bessel £fur'tion integral is obtained

1 -S exp (-jzy) dyI = v -00 2 .

One way to solve this last integral is to separate the integral into two

integrals over different parts of the region of integration.

0o0 1 exp (-jzy) dy + 2 Cos z7

Now using the formulas from McLachlan
1 0

! •1
exp (:-jzy) dy:y : TJ (Z)

2 -Cos zy- dy = -irYo(z)
FyU .
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gives the relation

] °j [•('(z) + JYo(z)J -- H('o (z)

where J (z), Y (z), and HM (z) are the Bessel functions of zero order
0 0 0 (1)

and argument z that are commonly designated by J, Y, and H

Reintroducing the value of z gives

I = 1H()k [h +p cosZ- lL j
1 V 0 k0
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